Personal Blog
  • 💻Notes for Computer Science
  • Leetcode
    • Array
      • Container with most water
      • 3Sum
      • Next Permutation
      • Valid Sudoku
      • Permutation II
      • Combination Sum
      • Triangle
      • Maximal Square
      • Pairs of Songs with Total Duration Divisible by 60
      • Numbers At Most N Given Digit Set
      • Possible Sum
      • Swap Lex Order
      • Partition Equal Subset Sum
      • Domino and Tromino
      • Numbers At Most N Given Digits
      • Car Pooling
      • Surrounding Regions
      • Min Size Subarray Sum
      • Burst Balloons
      • Jump Game I
      • Jump Game II
      • House Robber II
      • Delete and Earn
      • Word Break
      • Decode Ways
      • Longest Increasing Subsequence
      • Cherry Pickup
      • Rotate Image
    • LinkedList
      • IsListPalindrome
      • Linked List Cycle
      • MergeTwoLinkedList
      • ReverseNodeInKGroup
      • RearrangeLastN
      • Remove Duplicates From Sorted List
      • RemoveKFromList
    • String
      • Generate Parentheses
      • Longest Valid Parentheses
      • Longest Common Subsequence
      • Count and Say
      • Decode String
      • Permutation in String
    • Tree
      • House Robber III
      • Convert Sorted Array to Binary Search Tree
      • Restore Binary Tree
      • Populating Next Right Pointers in Each Node II
      • Subtree of Another Tree
    • Graph
      • All Paths from Source to Target
      • Reorder Routes to Make All Paths Lead to the City Zero
      • Max Points on a Line
  • DBMS
    • DBMS Notes
  • Web App
    • Web Design
    • JavaScript
    • React.js
    • ReactNative
    • Mobile Design
    • Dialogue Flow
  • AnaplanIntern
    • Splunk
    • Docker
    • Kubernetes
  • 💰 Notes for Finance Concept
  • Analysis Concept
    • Volume Spread Analysis
    • Smart Money Concepts
Powered by GitBook
On this page
  • Idea
  • Code
  1. Leetcode
  2. String

Count and Say

ID:38

PreviousLongest Common SubsequenceNextDecode String

Last updated 3 years ago

The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

  • countAndSay(1) = "1"

  • countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string.

To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying.

For example, the saying and conversion for digit string "3322251":

Given a positive integer n, return the nth term of the count-and-say sequence.

Input: n = 4
Output: "1211"
Explanation:
countAndSay(1) = "1"
countAndSay(2) = say "1" = one 1 = "11"
countAndSay(3) = say "11" = two 1's = "21"
countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"

Idea

Recursion

If n=1, base case, return "1"

If not, recursively call the method; When get a intermediate string, like "21", get the count of each element in sequence and connect count+number together to form the result

Code

public String countAndSay(int n) {
        if(n == 1){
            return "1";
        }
        String curr = countAndSay(n-1);
        int currInd = 1;
        String base = curr.substring(0,1);
        int count = 1;
        String result = "";
        if(curr.length()==1){
            return "1"+base;
        }
        while(currInd<curr.length()){
            if(curr.substring(currInd, currInd+1).equals(base)){
                count++;
            }
            else{
                result += String.valueOf(count)+base;
                base = curr.substring(currInd, currInd+1);
                count=1;
            }
            currInd++;
        }
        result+=String.valueOf(count)+base;
        return result;
    }